Neighbor sum distinguishing total choosability of planar graphs without adjacent triangles
نویسندگان
چکیده
منابع مشابه
Edge-choosability of planar graphs with no adjacent triangles
We show that if G is a planar graph with no two 3-faces sharing an edge and with ∆(G) 6= 5, then G is (∆(G) + 1)-edge-choosable. This improves results of Wang and Lih and of Zhang and Wu. We also show that if G is a planar graph with ∆(G) = 5 and G has no 4-cycles, then G is 6-edge-choosable. In addition, we prove that if G is a planar graph with ∆(G) = 5 and the distance between any two 3-face...
متن کاملGroup edge choosability of planar graphs without adjacent short cycles
In this paper, we aim to introduce the group version of edge coloring and list edge coloring, and prove that all 2-degenerate graphs along with some planar graphs without adjacent short cycles is group (∆(G) + 1)-edgechoosable while some planar graphs with large girth and maximum degree is group ∆(G)-edge-choosable.
متن کاملOn the Neighbor Sum Distinguishing Index of Planar Graphs
Let c be a proper edge colouring of a graph G = (V,E) with integers 1, 2, . . . , k. Then k ≥ ∆(G), while by Vizing’s theorem, no more than k = ∆(G)+ 1 is necessary for constructing such c. On the course of investigating irregularities in graphs, it has beenmoreover conjectured that only slightly larger k, i.e., k = ∆(G) + 2 enables enforcing additional strong feature of c, namely that it attri...
متن کاملEdge-choosability and total-choosability of planar graphs with no adjacent 3-cycles
Let G be a planar graph with no two 3-cycles sharing an edge. We show that if ∆(G) ≥ 9, then χ′l(G) = ∆(G) and χ ′′ l (G) = ∆(G) + 1. We also show that if ∆(G) ≥ 6, then χ ′ l(G) ≤ ∆(G) + 1 and if ∆(G) ≥ 7, then χ′′ l (G) ≤ ∆(G) + 2. All of these results extend to graphs in the projective plane and when ∆(G) ≥ 7 the results also extend to graphs in the torus and Klein bottle. This second edge-c...
متن کاملChoosability and edge choosability of planar graphs without five cycles
It is proved that a planar graph G without five cycles is three degenerate, hence, four choosable, and it is also edge-(A( G) + l)h c oosable. @ 2002 Elsevier Science Ltd. All rights reserved. Keywords-Choosability, Edge choosability, Degeneracy, Planar graph.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2017
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2016.11.003